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I. Introduction

Professor A. Weinstein[I 1[ 2 H 3 H has referred

to the study of solutions of the partial differential equations

as generalized axially symmetric potential theory (GASPT). This

equation is initially arrived at by considering those solutions of the

n-dimensional Laplace equation which depend solely on
= , y=( ---+X. '/  (in this case =n - 2).

In previous works this author( 511 6 If 71C 8] * +

has studied properties of the GASPT equation by function theoretic

methods based on the use of an integral operator Li) which

naps analytic functions jC() onto solutions of (1).

= ji(-'') " (2)
II

.4

Z x*1Y Z1 x*t8'

is an initial point of definition for 6(i) , 0 ' is sufficiently

* For similar investigtions of the integral operator method as applied

to GASPT, see Henrici [9 ] and Mackie 10 ] .

+ The function-theoretic approach which we use here is primailly due

toS. ergman, see for instance [13] , [ 12] and [13] .
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small, and integration path is the upper semi-circular arc connecting

+Ito -1.

In this paper we shall investigate the properties of

solutions to the non-homogeneous GASPT equation, namely

L ( (3)01 ' (.Y

by means of integral operator methods. One notes first, that when

K=0 ', equation (3) becomes

andthat byr replac ing K,)Y byr X( i ~ y L L

w may rewrite (4) as

which integrates directly into

This method suggests that e consider the integral

operator A.Ii : -1

4 u 

K -I

=, L ^r ~ ~ (5) ' -6 )(- "
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where f (T- a) is an analytic function of the two complex variables

Sis the saweas before, +

I -. eO<E , and 6'70 is sufficiently small etc.. It is clear,

that if *1= and X,) are real, then G'. Also, if

O a 0 , thn is either a function of T
-b r orthen.

or q respectively; in these cases A Ck , ena to is a

solution of (1).

In order to obtain a solution of (3) we apply the operator

LK to (5) and interchange the orders of integration and differentia-

tion, .

4'

I
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P, rearranging terms., and integrating by parts one obtains

- ,K -1 K-

+ " +1

\~ ~ j~i)I~] + OK E . -g

-| -| +1K -1
-I -I

4
-'

-I

- Sa €€ (sr,,PJ d .',y )• ()
-4"1

We realize from this, that if , a) satisfies the

integral equation (7), then is a solution

of equation (3).
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II. Properties of the Operator A, t )
We first prove

Theorem 1: In a sufficientl small neighborhood, Wla) ,of an

initial point of definition 0 the representation

-I

+1

yields the most general analtic solution to [ II 4)
providing that ' is contained in the class of analytic functions of

two variables , which satisfy the integral equatiou,

-|i

+1

Proof: It is clear that if i, then Ot') A, tT
is a solution of (3) if f £ N (E °) , and N(U0) is

sufficiently small. Furthemore, if R6¢.a) C , then

are arbitrary analytic functions of d' respectively. One then

has, that
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Theadifference w-1;- Pit. lj v %
represents the general analytic (in Xi ) solution of (i) is some

neighborhood N(~ Of~ since either Qv-2 or Q.

represent general solutions of the aASPT equation. (See Gilbert [ 5 ]

[ 61[ 7] ) ° It follows then that AKCF] represents the most

general solution to (3) in a sufficiently small neighborhood N )

The next problem we consider is the representation of

solutions of La14J ,LP(x,Y) by . For instance, if

IF has the series expansion

Z L j / (8)

"D=Do

what is the series representaticn in terms of , etc. for

kl) - Av ? we begin by recalling(
1 4 1

- ~ i Tn#

whereS 7 , , and C'v i ) is a egenbauer

polynomial (114 ] It follows then, that

I, ) (10)
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for s< uffi(.ntly small.

It is interesting to note that the class of functions

f,) t C , where e' = LY (tw -) are not even

locally ( (e ) ) solutions of the GASPT equation (6]

Consequently, the homogeneous polynomials, A , v (I-) of degree

n in X, Y , which are defined as coefficients of in the

trinomial expansion of f .

+. A~~'
Vs -0'

are not in general solutions of (1) either. It can be shown, never-

theless, that (T)'Q Ef1 ] does generate solutions

to (1), and that the set of functions 1 (I.) =- C' - generates

a complete system of polynomials 1 14 ]. To show that

4). Kfi11o , f 9 C is a solution of (1) w need

only integrate by parts as before

-f K-

49

* When Y= , the polynomial A v 1) is a solution of the

OAST 'equation for k-1 , since A o.) . , P4 ( ) .

We shall see shortly, that the A" 1) = constant ' In

where the P ( ) are associated Legendre functions.
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-~ - " ({-r-) T4 F' k "' (-'
1 T -Ic~

-t-f+d 4'

-!I-

Itmay be shown in the same "ay, that OK is

also a solution of the GASPT equation.

There is a relation, however, between the polynomials

Ai" ( ) and the associated Legendre functions. This may be seen

from Beine's integral relation [
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-n P1 __) = A..

Likewise of the expansion of

also may be related to the Legendre functions by

A ! Y)~1 W
6- M,)! 21

We note in passing, that expressions (13), (14) may be

used to give a representation for the Gegenbauer polynomials in terms of

the Legendre functions, when XQO.
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(4.4s I.+f1

hence

4,1") f -.. F' .) f (, + f

However, it is known* that for K ) 0

is the Beta-function. One then has

KII '- "', VA ) r(,

C -r + ~~(5
IK 2 .e Ze(A-4+'oOnhA! (

See pae 12 of Higher Transcendental Functions, Vol. I



One may consider the integral

--I

(11

m. ~~~V-4 P, soPto ,t. b A E#

we cosie the Inta ezato

* v-/,4 P i-) -')-{-',,'

-~~tnV (mt") N-'iu (^ev) /ii)i

(16)

III. Particular Solutions Generated by A If
In order to generate particular solutions of L**(~ ~

whe re JP is analytic about the origin in the real variables )(,

ve consider the integral equation
-1f K- d = A) KI.,,,,),

*-If

Ube re 4 Or.t If fbrty) has the

Taylor expansion. (, m!*k P
I4 a/b V. ,

•~~~~~~~~~= .1o.0~ =,,'D_: ,~, ,
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then one may solve formally for the Taylor coefficients, , of

(a; ql')as follovs.

-Il

-~M J O
+9+

I11YSO

4 M') I V,) ,,
10 UT1
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where (3r = r z ( (

V=-- I -

Several special cases are suggested immediately, for

instance, where f is a function of X or ) alone. If

'P(40y) M- (X) ,we may then choose e to have

the form G(-  )  (a-",)) ; one then has

and

f ' A particular solution to

the Poisson equation 'i? 'given by

r Y., % (-" " , T) _ IT)

OmK =-I Me-I

I =i(3.8)

In the case TO)-p ) , may

be represented as (7 6-T*) =nC-7 (r eYuat 1 -

and we consider then the integral equation,
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4-1

if a(Yrnd 27 y

V=. 0 ,' o

one may compute the Taylor coefficients formally as follows.

T) K-1() ~

+151

from which we have

v(v

______ (i /K4,

__ __ _ '~~~t~ ' 21 ,___soI~
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providing V% I c k >0 , for all n, and for K 0.

One may proceed as before and obtain a particular solution,

-I

4 +1 T4'

IV. The Poisson Equation in Three Variables

It is interesting to note that the methods developed in

the previous sections may be extended to Poisson's equation in three

variables, that is we consider the equation

A t __-v = (X -1
-. so (20)

We may generate solutions to this equation by means of an integral

representation similar to the Whittaker-Berfman operator

which maps functions of two complex variables into solutions of

Laplace' s equation, A I r = 0 3 *If1 12][ 13]

H(X) ~ ?(L 5 ' (21)
H 'V3T
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2.

X V(, ~apj here is a closed differentiable arc in

- plane, and 6 '7 0 is sufficiently small.

Following our previous method me introduce the integral representation

~ 3 (F)

where F is an analytic function of the three complex variables

i I ; t is the sam asabove,

2.

It is clear, that for lY and X (m) , J %3)

a real point, then t 4  t .if 'a=0 ,or O ,0then

F is a function of t or t respectively; in these cases 4 )

becomes the Whittaker-Bergman operator, and A jI) is a harmonic

function. IfP ) E C I , then we have by interchanging orders of

differentiation and integration

JTA (23)
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Hence, as before we may obtain a particular solution of 4k = ,

with the representation (22) if F is a solution of integral

equation (23). In order, to see how FIF) transforms analytic

functions of three variables into solutions of (20), we first consider

the integrals

( te V4 i 'r Cs :f )/

(214)

where WKWO& is the set of indices J ).'w

Consequently, if Fis the analytic function

F~t~~i)~jI q C tbt (25)

the corresponding function Lj(),which is regular in a neighborhood

of the origin is



- i.8 =

I A 4% (26)

Since, the integral (24) vanishes whenever jA I tH-1 we need Just

consider the functions P defined by (25). We shall realize that

this class of functions does not in general generate solutions to

4 p , when is an arbitrary real analytic function of

X)JCL X 3  I

Under certain conditions the integral equation (23) may be solved; to

see when this is possible we consider the integral

~ ~(*~)(tt,)Lwhere

and has a representation such as (25). The general term in the

series expansion for integrates as follows

( =! _ f_ K_

v=-v ,A ri-,A III

- IA-
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If f (X,, ,, X1 may be expe. led in terms of the polynomials

, we may find a function i which satisfies (23), and

consequently generate all solutions of (20). This clearly is not the

case in general; however, under certain criteria of symmetry on

, , X~X such an expansion will be possible.
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